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We study the influence of internal fluctuations on a simple but realistic model of a chemical system in an
excitable regime. Numerical simulations of the master equation are compared with results of molecular
dynamics simulations. We show that internal fluctuations are able to excite the system, which is initially at
a stable stationary state. The dependence of escape time on the system’s volume is studied. We observe that
correlations of fluctuations in concentrations do not depend on the volume and the results of both simulation
methods are in excellent agreement.

I. Introduction

Nonlinear dynamical systems and in particular chemical ones
in the so-called excitable regime are sensitive to internal
fluctuations. In the simplest case an excitable system has one
attracting stationary state, which is approached by all trajectories
starting from any point of the phase space. However, trajectories
initialized near the stationary state are attracted directly to it,
whereas those beginning at a little greater distance initially
evolve from the stationary state and later on they are attracted
to it. The behavior of an excitable system changes qualitatively
if one takes into account internal fluctuations, which are always
present in any real, dynamical system. Fluctuations can
influence the behavior of the system in such a way that
trajectories starting from the area of the direct attraction are
switched outside of it. In this case, the system may be
spontaneously excited and, moreover, subsequent spontaneous
excitations can lead to apparently oscillatory behavior.1 Internal
fluctuations may be described by introducing noise terms to
phenomenological dynamics (Langevin approach).2 The more
rigorous approach is based on the master equation (ME),2-4 but
the most complete description can be achieved using molecular
dynamics (MD) techniques.5 At the moment there is no chance
of describing any real, macroscopic excitable system using these
two approaches because one needs to consider an enormous
number of variables (of the order of 1023). Nowadays, in studies
of the influence of internal fluctuations on excitable systems,
one must construct simple models that can be treated by
numerical calculations.6,7 Recently, we have presented the
model of an open chemical system that allows direct simulations
of an oscillatory regime by the master equation approach and
by the molecular dynamics technique, which uses reactive hard
spheres.8 When the values of parameters are changed, the same
model can also describe excitability.

In this paper we present results of ME and MD simulations
of the influence of fluctuations on the behavior of the model
chemical system in the excitable regime, which initially is at
the stationary state or in the area of its direct attraction. In the
ME approach the dynamics of the system is considered as a
random walk along states determined by populations of mol-

ecules. Although the MD technique is much more demanding
from a computational point of view, it provides the complete
description of the dynamics of the system, i.e., positions and
momenta of all molecules. The internal fluctuations appear in
the MD simulations as consequence of the complex nature of
motion in many-body systems and the stochastic character of
reactive collisions. The chemical model considered includes
binary reactions only, and therefore, we can apply a very
efficient MD algorithm for reactive hard spheres.9

The paper is organized as follows. section II introduces the
phenomenological model we use. In section III we describe
the simulation schemes. Section IV presents results, and section
V discusses them.

II. Phenomenological Model

The model consists of the following elementary (bimolecular)
reactions:

This scheme is a modification of the model of an open chemical
system with a catalytic (enzymatic) reaction, inhibited by an
excess of its reactant V. The reactant V is transformed to the
product U with E as the catalyst (steps 2 and 3). This part of
the scheme is the well-known Langmuir-Hinshelwood mech-
anism of catalytic reactions (or the Michaelis-Menten kinetics
for enzymatic reactions). Step 4 is the inhibition of the
Langmuir-Hinshelwood mechanism (or the Michaelis-Menten
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scheme) by the reactant V. Moreover, the reactant V is
transformed directly to the product U in step 5. It is assumed,
that S is a solvent, whose concentration is maintained constant.
The system is open, owing to step 1, in which the reactant V is
produced from the reagent R, whose concentration is also
maintained constant. The model (eqs 1-5) has been recently
used in our studies on microscopic and stochastic simulations
of an oscillating chemical system. By a modification of its
parameters, we can use it to simulate a system in an excitable
regime.

The dynamics of the system is described by five kinetic
equations for V, U, E, X, and Y, but it is easy to see thatE(t)
+ X(t) + Y(t) ) E0 is the first integral of the system. Therefore,
one of the variablesE, X, or Y can be eliminated, and the
behavior of the system is described by four kinetic equations
only. These equations have the form

where, for convenience, the symbols of the reagents are used
to denote their concentrations because this notation does not
cause any misunderstandings.

It is easy to check that eqs 6-9 have only one stationary
state with the coordinates:

whereKi ) k-i/ki for i ) 1, 4, and 5.
For an appropriate choice of the rate constants and the

concentrations ofS, R, andE0, eqs 6-9 describe an excitable
system. The simulations can performed in an efficient way if
the rate constants are not very different, which means that all
reactions occur on a similar time scale. For the same reason
ratios of the concentrations of all reagents must remain within
3 orders of magnitude of unity. In particular, in simulations
described below we have usedS) 0.1,R ) 0.2,E0 ) 0.2 and
k1 ) 0.01,k-1 ) 0.012,k2 ) 8.0,k-2 ) 0.1,k3 ) 3.9,k4 ) 1.0,
k-4 ) 4.0, k5 ) 0.1, k-5 ) 0.1. For the chosen values of the
parameters the concentrations at the stationary state are equal
to

and the characteristic equation for the linearized case, which
describes the evolution of infinitesimal perturbations of the
stationary state, has two negative and two complex eigenvalues
equal to

Trajectories beginning sufficiently close to the stable station-
ary state are attracted to it with decreasing amplitude. It is
sufficient to change the initial condition a little. The variable
U initially decreases to small values accompanied by a corre-
sponding increase inV (see Figure 1). Next,V rapidly falls (U
grows) below the value at the stationary state, and later on, we
see a long time interval in whichV approaches its asymptotic
value.

III. Simulation Methods

In the mesoscopic treatment,2-4 a state of the system is
described by the probability distributionP(NV,NU,NE,NX,t) of
finding a given number of reagent molecules at timet (by
assumption, populationsNS andNR are kept constant). Let us
consider a system that containsNV,NU,NE, andNX molecules
of the respective species. The system “escapes” from the state
described by this set of molecular populations when any of
reactions 1-5 is performed. Thus, the total rate of “death” of
this state is given by the total frequency of reactive collisions
in the system

The coefficientsκi are determined from the condition that this
expression must agree with the rates of reactions in the
phenomenological eqs 6-9. This requirement yields the relation
κi ) ki/Ω betweenκi and the phenomenological rate constants
ki, whereΩ is the volume of the system. Similarly, the rate of
creation of a given state is a result of transitions from other
states, associated with one of the reactions from the eqs 1-5.
In this “birth” process, the final state is fixed but the initial

Figure 1. Projections of two trajectories obtained from numerical
solutions of eqs 6-9 on the V× U plane. The evolutions substantially
depend on initial conditions. The trajectory starting fromV ) 0.18,U
) 4.70,E ) 0.03495,X ) 0.1165 directly approaches the stationary
state (the large star), whereas other one beginning atV ) 0.20,U )
4.70,E ) 0.03495,X ) 0.1165 initially goes away from the attracting
point (only the initial fragment of this trajectory is shown).
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state depends on what particular chemical reaction is performed.
A balance of the “birth” and “death” rates yields the master
equation, which describes the dynamics of the probability
distribution functionP(NV,NU,NE,NX,t):

The positive components of the right-hand side of the master
equation describe the gain term corresponding to “creation”
processes. The phenomenological eqs 6-9 can be recovered
from the ME in the limitΩ f ∞ as the equations for the average
concentrations〈Ni/Ω〉. Equation 15 applies to a homogeneous
system, so it does not take into account local fluctuations.

From another point of view, the dynamics of a single chemical
system can be regarded as a random walk in the configuration
space, in which the coordinates are given by populations of
molecules. The form eq 15 of the ME, involving discrete
numbersNR for populations of the species, is convenient for
numerical simulations of this random motion. We have applied
the method of Gillespie10 to generate a random trajectory
according to the following algorithm. Let us assume that the
system at an instantt is in a state{NV,NU,NE,NX}. In the first
step, a waiting timeτ for escape of the system from this
configuration point is sampled from the exponential distribution

in whichV is given by eq 14. The next step consists of choosing
a particular reaction, which causes a transition of the system to
another point. The probabilitypR of selection of a chemical
processR from the scheme denoted by eqs 1-5 is proportional
to the contribution of this reaction to the total rateV of reactive
collisions. That means

where NR1 and NR2 denote populations of molecules of the
corresponding two species involved in the bimolecular reaction
R. After the reactive collision, the populations{NV,NU,NE,NX}
are updated because they result from the chosen reactionR.
Given this new state, the generation of the dynamics proceeds
from the first step and so on.

The periodically extended MD technique for reactive hard
spheres11 is applied to simulate the time evolution of the system
with reactions 1-5 at the microscopic level. The algorithm
used in this paper is exactly the same as described in refs 7 and
8. All reactants E, R, S, U, V, X, and Y are represented by
hard spheres with the same mass (m) and diameter (d). We
assume that there are no thermal effects in reactions 1-5, so
no kinetic energy is released or consumed when a reaction
occurs. The spheres are labeled by a chemical identity
parameter that defines their “chemical” properties but does not
have any influence on the mechanical motion. In simulations
all collisions between spheres are elastic. The rates of chemical
processes are controlled by the steric factors (theyare denoted

assi, s-i, i ) 1, 5). If a collision between spheres representing
reagents of a particular process occurs, then a random number
generator is called by the program, and if the resulting random
number is smaller than the corresponding steric factor, then the
collision is regarded as a reactive one. After such a collision
the chemical identity parameters of the spheres involved are
modified according to the reaction scheme depicted by eqs 1-5.
Otherwise, the collision is nonreactive and the spheres retain
their chemical identities.

In simulations the numbers of particles representing the
reactants R and S are constant, which is achieved by assuming
that the system contains nonreactive particles that play the role
of a reservoir of R and S molecules.12 If a particle of S (R)
vanishes in one of the reactions, then simultaneously a randomly
selected particle of reservoir is transformed into S (R),
respectively. On the other hand, if a particle of S (R) appears,
then a randomly chosen particle of S (R) becomes a particle of
reservoir. These processes have no influence on the dynamics
of the system because they do not participate in eqs 1-5.

To make simulations efficient, we use a prerecorded trajectory
representing a small system of spheres at thermal equilibrium
as the database on the sequence of collisions.11 Here, we study
periodic expansions of a system ofN ) 400 hard spheres placed
in a cubic box with a side of lengthl ) 12.5d (and thus, the
packing fraction isη ≈ 0.11). The prerecorded trajectory
contained information on 12 800 000 collisions (over 30 000
collision per sphere). We assume that the density of the system
is 8 [mol/L], which corresponds to the volume of the original
box equal to 83.(3)× 10-21 cm3. We rescale the unit of volume
used in the simulations to 103 cm3/NA ) 1.6(6) × 10-21 cm3

whereNA is Avogadro’s number. The volume of the original
box is equal to 50 in these units. In the new units the number
concentrations of reagents are numerically equal to the con-
centrations in mol/L in the phenomenological equations.

The values of steric factors for MD simulations were obtained
by scaling the phenomenological rate constants by 0.02, which
leads tos1 ) 0.0002,s-1 ) 0.00024,s-2 ) 0.002,s2 ) 0.16,
s3 ) 0.074,s4 ) 0.02,s-4 ) 0.08,s5 ) 0.002, ands-5 ) 0.002
for reactions 1-5, respectively. To adjust the frequencies of
reactive collisions to the rate constantski appearing in the kinetic
equations, the real time of the MD simulationstMD is rescaled
to the phenomenological timet according to

whereg ) 1.35 is the value of the radial distribution function
at the sphere diameterd for the system of spheres characterized
by the assumed density,kB is the Boltzmann constant, andT )
300 K is the temperature of our system. The results of all
simulations are presented using the phenomenological time
scale. The prerecorded trajectory describes the time evolution
within te ) 160 time units. At the beginning of each MD
simulation, the chemical identities are assigned to spheres in a
random way and all remaining spheres are marked as the
reservoir particles.

IV. Results

Figure 2 compares the results obtained in ME and MD
simulations for a system withΩ ) 17 150 with the numerical
solution of eqs 6-9. Let us mention that the escape from the
stationary state and its return require a much longer time than
te ) 160, which is reached in a single run of MD simulation.

∂P
∂t

) κ1NRNSP(NV-1,NU,NE,NX,t) + κ-1(NV + 1)NSP(NV+

1,NU,NE,NX,t) + κ2(NV + 1)(NE + 1)P(NV+1,NU,NE+
1,NX-1,t) + κ-2(NX + 1)NSP(NV-1,NU,NE-1,NX+1,t) +

κ3(NX + 1)NSP(NV,NU-1,NE-1,NX+1,t) + κ4(NV + 1)

(NX + 1)P(NV+1,NU,NE,NX+1,t) + κ-4(NE0
- NE - NX +

1)NSP(NV-1,NU,NE,NX-1,t) + κ5(NV + 1)NSP(NV+
1,NU-1,NE,NX,t) + κ-5(NU + 1)NSP(NV-1,NU+

1,NE,NX,t) - V(NV,NU,NE,NX)P(NV,NU,NE,NX,t) (15)

Θ(τ) ) V exp(-Vτ) (16)

pR ) V-1κRNR1NR2 (17)
t ) 1

8
d2gxπkBT

m

s1

k1
tMD (18)

7252 J. Phys. Chem. A, Vol. 102, No. 37, 1998 Nowakowski et al.



Therefore, to study a longer time behavior of the system by the
MD technique, we have performed a single simulation in which
the concentrations obtained at the end of one run were used as
the initial conditions for the next one. This procedure introduces
some stirring into our system after eachte interval, and it
destroys possible spatial correlations, which may appear between
particles representing different reactants. The single long MD
simulation drawn by the short dashed line is composed of several
(16) individual MD programs. The ends of the individual MD
programs are marked by stars in Figure 2. The solutions of

the phenomenological equations (the solid line) and ME
simulations (long dashed line) start from an arbitrary chosen
initial condition belonging to the MD trajectory (the initial point
is marked by a big cross). This initial condition belongs to the
region of space in which the system’s behavior is controlled
by the phenomenological dynamics, and the agreement between
phenomenology and both simulation methods is very good
indeed. The projection of the ME and MD trajectories on the
planeV × U is shown in Figure 2C, and also here, the results
of both methods agree very well with phenomenology.

Figure 3 shows the concentration ofV obtained in ME
simulations for a time interval much longer than that in Figure
2 for systems with the volumeΩ ) 6250 and 17 150. In all
simulations presented below, the initial concentrations of
reagents are equal to their values at the stationary stateVs, Us,
Es, and Xs . The dependence ofV on t (as well as other
variables) exhibits apparently oscillatory character, with a
random time interval separating the subsequent peaks. The
peaks appear more frequently for the system withΩ ) 6250
because the smaller system more easily escapes from the region
of direct attraction of the stationary state. This conclusion is
confirmed in simulations of a still larger system withΩ )
50 000, for which we have observed only a single peak in the
time interval 0< t < 100 000. We can define the escape time
from the stationary state as the time in which the concentration
of V reaches 0.7 which is approximately half the height of the
peaks in Figure 3. Using ME simulations, we have been able
to calculate the distribution function of this escape time for our
system with relatively small volumesΩ ) 6250 (from the
sample of 26 000 trajectories) andΩ ) 10 800 (from 11 000
runs). These results are shown in Figure 4. The distributions
exhibit sharp maxima and long time tails. As expected, the
most probable value of the escape time is greater for the larger
system.

The results presented in Figure 2 indicate that the escape from
the stationary state and the return to it require too long a time
to be modeled by molecular dynamics. However, the influence
of fluctuations is most important at the initial stage of the escape
process because the evolution after the escape can be satisfac-
torily described by the phenomenology, as seen in Figure 2.
For the initial parts of trajectories we have been able to obtain
average behavior from MD simulations. We considered two
sizes of the system:Ω ) 6250 andΩ ) 10 800. The averages
have been calculated from 36 reaction paths forΩ ) 6250 and
34 reaction paths forΩ ) 10 800. For the same volumes of
our system, the corresponding averages using the ME approach

Figure 2. Concentrations of V (A) and of U (B) obtained in
phenomenology (solid line), MD (the short dashed line) and ME (the
long dashed line) simulations forΩ ) 17 150 as functions of time.
Stars mark the ends of intervalste long which correspond to the
individual simulation MD programs. (C) Projections of the MD (dashed
line) and phenomenological trajectory (solid line) for the initial
condition V(0) ) 0.1666,U(0) ) 4.710,E(0) ) 0.0349 andX(0) )
0.1165 on theV × U plane.

Figure 3. Concentration of V obtained in ME simulations as a function
of time for a long interval 0< t < 100 000. Results forΩ ) 6250 are
plotted as a solid line and forΩ ) 10 800 as a dashed line.
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have been obtained from 40 000 and 30 000 runs, respectively.
We compare the mean concentrations, their dispersions, and
cross correlations between fluctuations of concentrations cal-
culated from these two approaches. The results are shown in
Figures 5-7, in which the following notation is used. The solid
and the long dashed lines represent the outcome of ME
ensembles forΩ ) 6250 andΩ ) 10800, respectively. The
dotted line and the short dashed line are obtained by averaging
over MD samples. The escape of V and U concentrations from
the stationary state is shown in Figure 5. The escape rates
decrease with the system volume as internal fluctuations are
reduced.

Significant differences between ME and MD results are
observed. The MD simulations give much faster escape
compared with ME simulations. Figure 6 shows changes of
dispersions of V, U, and X in time defined as

where A ) V, U, or X. The dispersions decrease with the
system volumes, and the agreement between ME and MD is
quite satisfactory.

In Figure 7 we show the correlations between fluctuations
of concentrations as functions of time, which are calculated from

Figure 4. Distribution of escape times from the stationary state: results
for Ω ) 6250 (solid line); results forΩ ) 10 800 (dashed line).

Figure 5. Average concentrations of V (A) and of U (B) obtained in
MD and ME simulations forΩ ) 6250 (short dashed line for MD and
long dashed line for MD) andΩ ) 10 800 (points for MD and solid
line for ME) as functions of time.

Figure 6. Dispersions of V (A), U (B), and X (C) obtained in MD
and ME simulations forΩ ) 6250 andΩ ) 10 800 as functions of
time. Notation is as in Figure 5.

σA(t) ) x〈(A(t) - 〈A(t)〉)2〉 (19)
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The correlations decrease with the system volumes, and the
agreement between ME and MD is excellent. As can be seen
from Figure 7, the absolute values of the correlations Corr(V,E,t)
and Corr(U,E,t) rapidly approach values close to 1. It means
that the corresponding fluctuations become strongly correlated
on a short time scale. These results can be understood because
V and E as well as U and E participate directly in the elementary
processes 2 and 3, respectively. The correlations Corr(U,X,t)
are much smaller, and they develop on longer time scales than

Corr(V,E,t) and Corr(U,E,t). It can be explained by the fact
that U and X are not directly involved in any of reactions 1-5.

V. Discussion

In this paper we presented results of microscopic simulations
for a chemical model of an excitable system. We have found
that the internal fluctuations move the system out of the domain
of direct attraction to the stationary state and that its further
evolution is governed mainly by deterministic dynamics.
Excitations exhibit stochastic character only in a small neighbor-
hood of the stationary state, which is manifested by the
randomness in times at which the subsequent peaks appear.

The model studied also describes limit cycle type oscillations.8

By appropriate changes of the parameters, we can switch the
system from an oscillatory regime to an excitable one and vice
versa. There is an important difference in the apparently
oscillatory behavior in the excitable system (see Figure 3) and
in the system in the oscillatory regime. In the latter case we
have observed that the period of oscillations does not depend
on the volume of the system.8 In the excitable system the
apparent “period” of oscillations strongly increases with the
volume. To explain this property, let us discuss in more detail
the master equation. For large volumes, the discreteness of the
ME becomes less important and eq 15 can be expressed in terms
of continuum variablesNR/Ω, i.e., concentrations. This trans-
formation yields the multivariable Fokker-Planck equation,2,4

the form of which allows for a physical interpretation. Terms
involving first derivatives with respect to concentrations are
related to deterministic dynamics whereas terms with second
derivatives describe dispersion of deterministic states, due to
internal fluctuations in the system. The fluctuation terms are
of the order of 1/Ω, and therefore, fluctuations play a more
important role in systems with smaller volumes. As a result,
the escape time from the stationary state increases with volume.
Moreover, a large dispersion of apparent “periods” of oscilla-
tions increasing with the volume of the system should be
observed in simulations of the excitable regime, whereas no
such dependence has been found for the system in the oscillatory
regime.8 The conclusions on the role of fluctuations in the
excitable system based on the ME are confirmed in the MD
simulations. As can be seen in Figure 6, the dispersions as
functions of time obtained in both simulations are in fair
agreement, although the average values of the concentrations
are different (see Figure 5). Moreover, the correlations between
fluctuations agree very well (see Figure 7). Thus, we believe
that the ME approach may be successfully applied to the study
of the role of global fluctuations in nonlinear chemical systems.

We want to stress that the model presented in this paper does
not contain any autocatalytic step and consists of bimolecular
reactions only. The core of the model is commonly used in
chemical and enzymatic kinetics. The inhibition of the Lang-
muir-Hinshelwood or Michaelis-Menten schemes described
by step 4 is the simplest way to explain the decreasing rates of
catalytic or enzymatic reactions observed for increasing con-
centration of a reactant in many reactions. Therefore, we believe
that our model can be useful for looking at real systems, which
can be tested experimentally for the influence of fluctuations.
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